Close

Travel With Us

Enter your email address
Continue

The moon may be tectonically active, and geologists are shaken

A new look at Apollo-era seismic data revealed that the moon's insides might be warmer than scientists thought possible.

When building a remote outpost, it’s usually a good idea to stay away from active fault lines. Fortunately for people planning human habitation on the moon, it’s long seemed that our tiny natural satellite is a geologically dead world. After all, you need internal heat for tectonic activity, and small rocky worlds like the moon are thought to cool much more rapidly than larger ones like Earth.

But now, fresh analysis of Apollo-era data suggests that the moon is actually more tectonically active than previously presumed.

MOON 101
What is the moon made of, and how did it form? Learn about the moon's violent origins, how its phases shaped the earliest calendars, and how humans first explored Earth's only natural satellite half a century ago.

In a study out today in Nature Geoscience, researchers may have finally pinpointed the epicenters of mysterious moonquakes recorded by Apollo-era seismometers, and the tremors seem to originate from cliff-like features called fault scarps.

“The whole idea that a 4.6-billion-year-old rocky body like the moon has managed to stay hot enough in the interior and produce this network of faults just flies in the face of conventional wisdom,” says study coauthor Thomas Watters of the Smithsonian Institution in Washington, DC.

Rocky tides

This summer will mark 50 years since the remarkable achievements of Apollo 11. Back during the space race, the United States was more focused on getting its astronauts to the lunar surface and back before the Soviets then on what to do with their moonwalkers while they were there.

“They were like, Oh crap, we need to come up with some stuff,” says coauthor Renee Weber, a planetary scientist at NASA’s Marshall Space Flight Center in Huntsville, Alabama.

That “stuff” ended up being science, such as collecting a wealth of geological data, including rocky samples brought back to Earth. And on four of the Apollo missions, astronauts placed seismometers at their landing sites, which recorded thousands of deep quakes over the eight years that they remained functional.

Seismicity on the moon relies on quite different underlying mechanisms than what’s happening on our own world, Weber says. Most of the moon’s activity comes from gravitational forces that Earth exerts on its small grey satellite, essentially the converse of how the moon pulls on our oceans to cause the regular rise and fall of the tides. Without water, the lunar surface instead gets deformed, stretching from a spherical shape into a more oblong one and back again.

Enormous day-to-night temperature shifts, which can exceed 260 degrees Celcius, also drive some lunar seismic activity. A few of the detected quakes were even humanmade, created when mission control ordered expendable spaceship parts to crash into the moon to calibrate the seismometers.

But 28 of the recorded events seemed to originate in the upper few miles of the lunar crust. These events were as powerful as magnitude 5.5 earthquakes on our planet, and they have defied explanation for more than 40 years.

RELATED PHOTOS: RARE VIEWS OF THE MOON TAKEN BY APOLLO ASTRONAUTS

Apollo 11 astronaut Edwin “Buzz” Aldrin poses with the US flag planted on the Sea of Tranquility. If you look closely, you can see Aldrin’s face through his helmet visor.
PHOTOGRAPH BY NASA

Seismic search

Since 2009, Watters has been using images from NASA’s Lunar Reconnaissance Orbiter to map thousands of scarps all around the moon. Based on how fresh the lunar material around them looked, he could tell that they had formed relatively recently, perhaps less than 50 million years ago, “which is young geologically, but not young, young,” he says.

Still, Watters suspected that the scarps might be the sites responsible for the shallow moonquakes, but he needed further evidence. With four seismometers that produced relatively low-quality data, the Apollo instruments could only triangulate the tremors to within around 160 kilometres.

This seismic shakemap created from NASA images shows the expected motion for a shallow "moonquake" on a thrust fault associated with the Mandel’shtam scarp on the lunar surface.
PHOTOGRAPH BY UNIVERSITY OF MARYLAND/SMITHSONIAN

So the researchers used an algorithm normally employed to determine the location of quakes on Earth when seismometer networks are sparse, creating a grid of putative origin points for the lunar quakes. Of the 28 recorded events, eight might have occurred within around 29 kilometres of a scarp, and six of those happened when the moon was at its farthest point from Earth, just when tidal stresses on the lunar surface should peak.

To check whether the correlation might just be due to random chance, the team simulated 10,000 seismic events to see how often they might produce a pattern like this. They found that there were roughly one-percent odds that all these factors could line up in this way. For Watters, this suggests that the scarps are the most likely epicenters of the moonquakes.

“That means, for all intents and purposes, the moon is tectonically active,” he says. “To me, that’s an amazing result.”

Sights on a scarp

Yet the uncertainties in the results mean that other researchers aren’t considering this a done deal just yet.

“They use a lot of statistical arguments, and I think they do good science, but I wouldn’t say it’s definitely there,” says Ceri Nunn, who works on lunar seismology at NASA’s Jet Propulsion Laboratory in California. Still, given the non-ideal quality of the original data, she thinks the team seems to have pinned down the locations for the epicenters as well as possible for now.

Weber and others are gearing up to propose a mission that would place a new network of state-of-the-art seismometers on the moon, perhaps with one touching down on or near a scarp.

And in the meanwhile, given the renewed interest in lunar exploration from countries and private companies around the world, the findings provide a good map for places that upcoming landers might like to avoid.

Related Articles

Discuss this article

Newsletter

Never miss a Nat Geo moment

Your email address
Submit
We use our own and third-party cookies to improve our services, personalise your advertising and remember your preferences. If you continue browsing, or click on the accept button on this banner, we understand that you accept the use of cookies on our website. For more information visit our Cookies Policy AcceptClose cookie policy overlay