Building Block for 'Vinyl Life' Found on Saturn's Moon Titan

And there’s enough of it in one large alien lake to potentially create 36 billion giant squid.

When winter comes to Titan’s poles, it brings seasonal downpours of toxic molecules that could, under the right conditions, assemble themselves into structures like the biological membranes that encase living cells on Earth.

Called vinyl cyanide, those molecules are created high in Titan’s atmosphere, and now, scientists know there’s a truckload of them tucked into the moon’s orange haze that probably rain down on its icy surface.

More than 10 billion tonnes of it could be floating in Ligeia Mare, the second-largest lake in the north, according to the paper published today in Science Advances.

Cassini caught the onset of winter on Titan as a massive cloud of frozen compounds formed above the moon's south pole.

What the compound does once it gets into Titan’s lakes, and whether it actually self-assembles, is still a mystery. But based on the molecule’s hypothesised ability to form membranes, the discovery raises the question of whether one of life’s key requirements might be easily achievable in Titan’s alien oceans.

In this stunning animation, watch NASA's Cassini spacecraft begin the last chapter of its 20-year mission to Saturn

“Titan has unique and weird chemistry, and all the evidence we have so far suggests there’s a possibility for it to be doing a lot of things we think are necessary for life to exist,” says Johns Hopkins University’s Sarah Hörst.

“Everything we have ever learned from planetary science tells us that other worlds are way more creative than we are.”


The largest of Saturn’s moons has intrigued astrobiologists for decades: Titan is more or less Earthlike except for its completely different chemistry. It’s the only other world in the solar system where liquids stream and surge across the surface, it clings to a puffy nitrogen atmosphere, and it’s literally covered in complex organic compounds.

But temperatures on Titan plunge so low (-290°F) that water is hard as rock, so liquid ethane and methane flow into its seas instead. The dunes near its equator aren’t made of sand but of frozen plastics, and it rains compounds normally synthesized in chemical processing plants on Earth.

In other words, if life evolved on Titan, its molecular machinery would be fine-tuned for efficiency in hydrocarbons rather than water.

“There is nowhere else in the entire solar system that has those liquid hydrocarbon lakes,” says study coauthor Conor Nixon of NASA’s Goddard Space Flight Center. “You need a whole new biology to support that.”

A colourised mosaic from NASA's Cassini spacecraft reveals the lakes and seas of hydrocarbons that decorate Titan's northern hemisphere.

Since 2004, the Cassini spacecraft has been buzzing around the Saturn system and helping scientists study this big, weird moon. More than a decade ago, it spied evidence for a molecule with the atomic ingredients of vinyl cyanide—three carbons, three hydrogens, and a nitrogen—but Cassini data couldn’t tell scientists anything about whether those atoms were arranged in the vinyl cyanide configuration.

Titan hangs like a pearl above Saturn's rings in this view from Cassini.

More recently, study leader Maureen Palmer, also currently at NASA, and her colleagues took a look at some data gathered by a cluster of telescopes in Chile called ALMA. Scientists staring at cosmic wonders such as distant galaxies and interstellar clouds had been aiming ALMA’s dishes at Titan and using the hazy world to calibrate their observations.

As it turned out, the unmistakable signature of vinyl cyanide—not just the right atoms, but the entire molecular structure—lay in calibration data taken between February and May 2014.

Using those serendipitous data, the scientists determined that millions of pounds of vinyl cyanide hover in Titan’s atmosphere. The team detected it primarily at altitudes above 120 miles, which makes sense, because vinyl cyanide forms when sunlight and other charged particles strike the top of Titan’s nitrogenous sheath, busting up the existing methane and nitrogen “like Lego blocks,” Nixon says.

Titan's thick atmosphere long obscured our view of the moon's surface.

Those atoms then reassemble into a variety of complex structures, including vinyl cyanide, which slowly condense and sink through the atmosphere, eventually hitching a ride to the surface in raindrops. Because of Titan’s seasons and atmospheric circulation patterns, the highest concentrations of those molecules rain down upon whichever of the moon’s two poles is wrapped in winter, but showers of these intriguing particles sprinkle the entire ice world to an extent.

“It could be coming down all over Titan and just lying on the surface as an organic residue, it could be reactive and making long chain polymers,” Nixon says. “Or, it could be dropping into the lakes, and once it’s in the lakes, it self-organises.”


The idea that vinyl cyanide might form something similar to Earthly cells comes from a research group at Cornell University. That team looked at about a dozen of Titan’s atmospheric molecules and used computer models to determine which of them had the ability to self-assemble into membrane-like structures called azotosomes.

Helmed by then-graduate student James Stevenson, the team found that vinyl cyanide had the best chance of forming something that could be astrobiologically relevant in Titan’s extremely cold, liquid methane seas.

Like Earthy membranes, the simulated configuration was both strong and flexible, possibly forming a hollow sphere capable of sequestering other ingredients necessary for life, and its tendencies to aggregate or separate in methane were just right.

Peering through the haze, Cassini is able to map Titan's hydrocarbon lakes and icy dunes.

“[The molecules] have to like each other not so much that they clump together with no space in between, but also like each other enough that they’ll form chains, and then if the ends come near each other they say, ‘Oh yes! Let’s link up,’” says Cornell's Paulette Clancy.

So far, no one has done the actual lab experiment needed to prove vinyl cyanide can form membranes. It’s difficult working with cryogenic methane and poisonous cyanide—and after all, there’s only so much you can do to replicate what’s happening on Titan when you live on Earth.

“Find the best organic chemist you can find, and ask them if they’re up for the challenge,” Clancy says.

One of Saturn's smaller moons, Tethys, slips behind Titan in a sequence of pictures from Cassini.

Still, the fact that vinyl cyanide has the theorised ability to form membranous balls is even more tantalizing now that we know how abundant it is on Titan: Going by mass alone, there’s enough of it in Ligeia Mare to make at least 36 billion giant squid. The discovery might be the extra kick needed to send another spacecraft diving toward this strange orange moon.

“We still are at the very beginning of the experimental work that’s really necessary to understand Titan’s lakes,” Hörst says. “But we’re never going to fundamentally know what the system is doing until we’re able to go back.”

Titan, as seen from six miles above the surface. This view was created by stitching together images from the Huygens probe.

Header Image: Saturn's largest moon, Titan, passes in front of the planet and its rings in this true-color snapshot from NASA's Cassini spacecraft. PHOTOGRAPH BY NASA

Discuss this article


Never miss a Nat Geo moment

Your email address
We use our own and third-party cookies to improve our services, personalise your advertising and remember your preferences. If you continue browsing, or click on the accept button on this banner, we understand that you accept the use of cookies on our website. For more information visit our Cookies Policy AcceptClose cookie policy overlay